Skip to content

Math

Definitions & Conceptions#

Wolfram MathWorld

easy definitions#

Statistics#
  • confidence interval A confidence interval means that if you take all possible samples of size n and compute their 95% confidence intervals, 95% of the intervals will include the population proportion, and only 5% of them will not.
Discrete / Graph theory#

Notes#

STAT#

A transition matrix $P=\begin{bmatrix} a & 1-a \ 1-b & b\end{bmatrix}$ has a stationary distribution $\pi=\begin{bmatrix} \frac{b-1}{a+b-2} & \frac{a-1}{a+b-2} \end{bmatrix}$, or $$\pi=\begin{bmatrix} \frac{b_{lose}}{a_{lose}+b_{lose}} & \frac{a_{lose}}{a_{lose}+b_{lose}} \end{bmatrix}$$ [Inspired by]( "Suppose that Peter and Paul alternate tossing a coin for which the probability of a head is three tenths and the probability of a tail is seven tenths. If they toss until someone gets a head, and Peter goes first, what is the probability that Peter wins?")

Terminology#

常用缩写#

ABBR meaning
WLOG without loss of generalcity
WLOG: without loss of generality Sin pérdida de generalidad
BWOC by way of contradiction
sps suppose

读音


written how to read
$N_O$ N-nought, n subscript zero, N-zero, N-null
$\aleph_0$ Aleph-nought, aleph-null

Math words#

Group English 中文
- parity 奇偶性
- Scientific notation 科学计数法
$b^{x}$ Exponential function 指数函数
$b^{x}$: $b$ base 底数 / 基数
$b^{x}$: $x$ index / exponent 指数
stationary distribution 平稳分布
coset 陪集/伴集/傍集

Idempotent matrix Morphism 态射

symbols#
Symbol English 中文
plus 加号;正号
minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
is equal to 等于号
is not equal to 不等于号
is equivalent to 全等于号
is equal to or approximately equal to 等于或约等于号
is approximately equal to 约等于号
less than sign 小于号
more than or greater than sign 大于号
is not less than 不小于号
is not more than 不大于号
is less than or equal to 小于或等于号
is more than or equal to 大于或等于号
per cent 百分之…
per mill 千分之…
infinity 无限大号
varies as 与…成比例
(square) root 平方根
since; because 因为
hence 所以
equals, as (proportion) 等于, 成比例
angle
semicircle 半圆
circle
circumference 圆周
triangle 三角形
perpendicular to 垂直于
union of 并, 合集
intersection of 交, 通集
the integral of …的积分
(sigma) summation of 总和
° degree
minute
second
number …号
Celsius system 摄氏度
at 在

advanced symbols#

Symbol Meaning
$\hookrightarrow$ “有钩箭头” 常用来标记一[包含映射]^1

set theory#

全序集 (Total order) total order, simple order, linear order, connex order, or full order A set paired with a total order is called a chain, a totally ordered set, a simply ordered set, a linearly ordered set, or a loset.

upper bound or majorant | bounded from above or majorized | bounded above lower bound or minorant | bounded from below or minorized | bounded below

Why is the set of all integers denoted by ℤ ? The notation Z came from the first letter of the German word Zahl, which means number. source

Cayley table = multiplication table for group. Cayley table describes the structure of a finite group by arranging all the possible products of all the group's elements

$A\subset B \iff A \cup B=B$

$e \in A \rightarrow e\in B \iff A \cup B=B$

包含映射 = 内含映射 = 自然映射。 常用字母 i 表示。

group theory#

some terms#

Chi Eng
同态基本定理 Fundamental theorem on homomorphisms
第一/二同构定理 Isomorphism theorems (Th A,B)
商群 Quotient group
单群 Simple group
单射 Injective function / injection
单射 surjective function / surjective
  • Free module: module that has a basis.

unclassified note.#

  • Symmetric group(对称群) is not Symmetry group(空间对称群)
  • permutation group(置换群): subgroup of the symmetric group(对称群).
  • 陪集 = 伴集 = 傍集 是子集的等价类,eg: in $\mathbb{Z}/n$, $\bar{1}=1+\bar{0}=\bar{0}+1$ 左右陪集相同 $\iff$ 正规子群。
  • 同态的类型 同构(isomorphism):就是双射的同态。两个对象称为同构的,如果存在相互间的同构映射。同构的对象就其上的结构而言是无法区分的。 满同态(epimorphism):就是满射的同态。 单同态(monomorphism):(有时也称扩张)是单射的同态。 双同态(bimorphism):若 $f$ 既是满同态也是单同态,则称 f 为双同态。?和同构的区别? 自同态(endomorphism):任何同态 $f : X \rightarrow X$ 称为 $X$ 上的一个自同态。 自同构(automorphism):若一个自同态也是同构的,那么称之为自同构。

book 《抽象代数学》#

notes:#

If $G/K$ Abelian, $G'=[G:G]={aba^-b^-| a,b \in G} \subset K$.

Exercise#

2-3-2 All subgroup of $G$ is normal. Show that $G$ is Abelian.

BWOC, suppose that exist $g,h$ such that $gh\neq hg$. Note $G=, H=$. $G,H$ is subgroup so both are normal. Then by $gH=Hg, Gh=hG$, exist $m,n\in \mathbb{Z}$, such that $gh=h^m g, gh=h g^n$. This means $h^mg=gh=hg^n$, or $u:= h^{m-1}=g^{n-1}$. $gu=ug; hu=uh$. Here we can assume that $d:=\gcd(m-1,n-1)=1$, otherwise, WLOG, we set $u^d:= h^{m-1}=g^{n-1}$

So $gu=gh^{m-1}=ghh^{m-2}=(hg^n)h^{m-2}=(hgu)h^{m-2}=hgh^{m-2}u=h^2gh^{m-3}u^2=h^3gh^{m-4}u^3=\dots=h^{m-1}gh^{m-m}u^{m-1}=ugu^{m-1}=gu^m$.

This shows $u^{m-1}=e$

Similarly, $uh=g^{n-1}h=ug^{n-2}hg=u^{n-1}hg^{n-1}=u^nh$

$u^{m-1}=e=u^{n-1}, h^{(m-1)(n-1)}=g^{(m-1)(n-1)}=e$ > $u^d=e$, and by assumption, $d=1$. Hence $u=e$

So, $gh=hgu=hge=hg$. It contradicts $gh\neq hg$.

(7). $N$ is normal subgroup of a finite group $G$. $|N|$ and $|G|/|N|$ coprime. Show that $\forall x, x^{|N|}=e \implies x\in N$.

Let $t = |G|/|N|=|G/N| , n=|N|$, then $N=x^{lt}N, \forall l\in \mathbb{Z}$. Also $x^{mn}N=N, \forall l\in \mathbb{Z}$. This implies that $\exist l,m$ such that $x^N=x^{mn-lt}N=N$, since $gcd(n,t)=1$. QED.

(8). $N$ is normal subgroup of group $G$. $N \cap [G,G]={e}$. Show that $N \subseteq C$, center of $G$

Note $G'=[G,G], \forall n\in N, \forall g\in G, n\in N \iff gng^-\in N \iff ngn^-g^-=n(gn^-g^-)\in N. ngn^-g^-\in G' \iff ngn^-g^-=e\in N\cap G' \iff ng=gn \iff N \subseteq C.$

(10). $\exist p, \forall a,b \in G, (ab)^p=a^p b^p$. Denote $S:={x\in G| \exist m\in \mathbb{N}, x^{p^m} = e }$. Show that $S$ is normal, and $x^pS=S \rightarrow xS=S$.

$\forall g \in G, \forall s \in S, (gsg^-)^{p^m}=gs^{p^m}g^-=e \iff gsg^- \in S \iff S$ is normal.

$x^p S = S \iff x^p \in S \iff \exist m\in \mathbb{N}, {(x^p)}^{p^m} = e = x^{p\cdot p^m} = x^{p^{m+1}} \iff x\in S$.

(11). $|G|=120, H\subset G, |H|=24$. Show $\exist g\notin H, gH=Hg \rightarrow H \triangleleft G$.

Think about $F=\, H\subset F \subset G \iff 5|H|=|G|=k|F|=kl|H|, k,l\in \mathbb{Z}$. While $g \notin H \iff gH \neq H \implies |F|>|G| \implies |G|=|F|=5|H| \iff G=F \iff G=H\sqcup gH\sqcup g^2H\sqcup g^3H\sqcup g^4H \iff \forall x\notin H, \exist k\in {1,2,3,4}, h_1,h_2\in H, x=g^kh_1=h_2g^k \implies xH=g^kh_1H=g^kH=Hg^k=Hh_2g^k=Hx \iff \forall x \in G, xH=Hx \iff H$ is normal. QED.

2-4

(8). Show that $N$ is a maximal normal subgroup of $G \iff G/N$ is simple.

$N$ is normal subgroup.

$G/N$ is simple $\iff G/N$ has only trivial subgroups ${e},G/N \iff \nexists H/N \triangleleft G/N, {e} \subsetneq H \subsetneq G/N \iff \nexists H\triangleleft G, N\subsetneq H \subsetneq G$.

NOTE: Image of function/mapping and Quotient group are always related.

(9). $N,H$ are two maximal normal subgroups of $G$. Show that $H \cap N$ is a maximal normal subgroup of $H$.

$H \cap N$ is a maximal normal subgroup of $H \iff H/H\cap N\cong NH/N$ simple $\impliedby NH \subset G, G/N$ simple. $\iff N$ is maximal normal subgroup of $G$.

$\impliedby: NH=G$ for the maximality (being maximal).

(10). Let $\phi$ is an automorphism, $\phi(a)=a \leftrightarrow a=e$. Show that $\psi: a \mapsto \phi(a)a^{-1}$ is injective. If $G$ is finite, all element of $G$ has form $\phi(a)a^{-1}$.

$\psi$ is injective: $\psi(x)=\psi(y) \iff \phi(x)x^{-1}=\phi(y)y^{-1} \iff \phi(xy^-)=\phi(x)\phi(y^-)=xy^- \iff xy^-=e \iff x=y$.

This is equivalent to show that $\psi$ is surjective. $e=\phi(e)e^-. \forall a\neq e, a\neq \phi(a)a^-$. $\psi$ is injective $\implies |\psi(G)|=|G|$. $\psi$ is an automorphism. $\implies \psi(G) \subset G$. This means $G=\psi(G)$. So it is bijective hence a surjective.

(11). $G,\phi$ as in (10). $G$ is finite and $\phi^2=1$. Show that $|G|$ is odd and that $G$ is Abelian.

Define a relation $a \sim b \iff \phi(a)=b \vee a=b$. Then $a\sim a; a \sim b \implies a=\phi(\phi(a)) = \phi(b)\lor a=b; a\sim b,b\sim c \implies c=a \vee c=\phi(a) \vee c=\phi(\phi(a))=a \iff a\sim c.$ This means it is equivalence. Equivalence classes of $\sim$ on $G$, except ${e}$, have 2 elements. So $|G|$ is odd.

Since all elements of $G$ can be written as $\phi(a)a^-$ from conclusion of (10). $\forall g\in G, \exists a, g=\phi(a)a^- \implies g\phi(g)=\phi(a)a^- \phi(\phi(a))\phi(a^-)=\phi(a)a^- \phi(\phi(a))\phi(a^-)=\phi(a)a^- a\phi(a^-)=e$. Similarly, $\phi(g)g=e$. This means $\phi(g) = g^-$. We can get our objective by applying (7).

NOTE: to prove $\phi(g)=g^-$, we need to rewrite $g=\phi(a)a^-$.

(12). $G$ is finite and Abelian. $|G|=n, \gcd(m,n)=1.$ Show that $\phi: x\mapsto x^m$ is an automorphism of $G$.

$\phi(G) \subset G$ because $G$ is a group.

$\phi$ is injective. $x^m=y^m \implies \exist k,l : x=x^{km-ln}=y^{km-ln}=y.$ Injective $\implies |\phi(G)|=|G|$. Automorphism $\implies \phi(G) \subset G$. This means $G=\phi(G)$. So it is surjective, hence bijective.

(13). $G$ finite and $|G|>2$. $\exists a: a^2 \neq e.$ Show that $|Aut(G)|>1$.

$\exists a: a^2 \neq e.$ is not needed. If $|G|$ is prime, $G$ is cyclic group, $x \mapsto x^2$ is an automorphism. If $|G|$ composite, $G=\bigoplus\Z/n\Z$. If $n=2, \forall n$, we can mapping one generator to another. If not, $\exist n \neq 2 \implies \exists a: a^2 \neq e.$

Sylow 定理证明:#

取一个 所有 G 的 Sylow 群构成的集合 的 G-轨道,T。$r:=|T|$. 在该轨道中,取一 p-群 P, 群 P 对 T 对轨道分划中,有一个元素的轨道只有{P},若有{Q}则 PQ=QP 是一个 p-群,与 P 是 sylow p-群 矛盾(其他轨道中的元素数均为 p 的 ~~倍数~~ 幂次 )。 因此 $r\equiv 1(\mod p)$。 如果该集合有另一轨道,取另一轨道中的元素 P,对轨道 T 如上分划计数,则 r 是 p 对倍数,矛盾。因此只有一个轨道。

证明策略:

  • 证明是正规子群:正规化子=整个群。
  • 商群+归纳法。
  • $HN$ 封闭 $\iff HN=NH$.

Theory of Computation#

book: Introduction to the Theory of Computation

tools#

LaTeX typesetting in Mathematica http://szhorvat.net/pelican/latex-typesetting-in-mathematica.html